1992年

タイの人々と植物とのかかわり（その2）
アマゾンの薬草

社団法人 海外農業開発協会
タイの人々と植物とのかかわり…………………………………………………………1
草木いろいろ（その2）

アマゾン便り 7 ………………………………………………………………………………14
アマゾンの薬草

「海外農林業開発協力促進事業」制度のご案内 ……………………………………………18
タイの人々と植物とのかかわり
草木いろいろ（その2）

農林水産省東北農業試験場
水田利用分野草間作研究室 室長 原田 二郎

□病気は草木で治す 〜薬用となる野草〜

世界各地で多くの野生植物が民間薬として利用されてきた。タイ国もその例外ではなく、野山は薬草園と呼ぶにふさわしいほど薬用とされる植物があふれている。そのいくつかを主な用途とともに第4表に示した。このうち、ヨモギA. vulgaris（タイ名：パクヘア）、コエンゲツグサB. pilosa（タイ名：ブエンノクサイ）、ブクリョウサイD. integrifolia（タイ名：パクチードイ、写真20）、ナルソバP. chinense（タイ名：パヤードン、写真21）、ツクシメナモミS. orientalis（タイ名：サバモク）、クマツサラV. officinalis（タイ名：ナンドンラーン、写真22）などは、主として北部タイの高標高地帯に多く生育する。中央平野などでは入手するのが困難な植物と思われるが、その他は全国どこでも見られる雑草である。

平地に生育する植物の中で主なものをあげると、風邪など呼吸器系の病気に対有効なものとして、ムラサキイノコズチA. aspera（タイ名：パックーグー）、カッチウアザミA. conyzoides（タイ名：ヤーサープレ、写真23）、マルパラクサC. benghalensis（タイ名：パックラーブ）、ニョイイニガサH. suaveolens（タイ名：メーンラクカー）、シチヘンゲL. camara（タイ名：バックーカクロー、写真24）、カタラミO. corniculata（タイ名：ソムコップ）、O. esculentum（タイ名：チャムークプラロット、写真25）、カクセンケイソウP. foetida（タイ名：カーストリク、写真26）、シマカナビキソウS. dulcis（タイ名：クラタイチャーム）、ムラサキムカヨモギV. cinerea（タイ名：ヤーサムワン）、オナモミX. strumarium（タイ名：クラチャブ）などがある。一方、消化器系の病気に対有効なものとして、シマニキソウE. hirta（タイ名：ナムノムラチャセー、写真27）、E. thymifolia（タイ名：ナムノムラチャセーレック）、H. indicum（タイ名：ヤーサンカンチャー）、チザヤI. cylindrica（タイ名：ヤーカー）、スペリヒユP. oleracea（タイ名：パックピアヤ）、ナンヨウヒメノマエガミS. asiatica（タイ名：ヤーメイモット）などがある。

前号で水生野菜としてあげたアサガオ（写真28）は食中毒に有効とされるが、その若い地の浅深部に魚介類の料理にはつきもので、一緒に多量に食べる習慣があるのは、食中毒の予防にも効果があるためかもしれない。泌尿器の病気に有効なものとしては、ツルノゲイトウA. sessilis（タイ名：パックベットタイ、写真29）、タカサプロウE. alba（タイ名：カメン）、ミズイロナガボソウS. indica（タイ名：パックーキーオ）などがあり、そのほか多くの植物が外用として蛇毒、温疹などに利用される。

筆者がタイ滞在中に訪れたマンマー（旧ビルマ）の首都ヤンゴン（旧ラングーン）のマークートでは、今でもこれらの薬草を生のまま並べて売っていたが、タイでは事情がいささか違う。漢方薬も含めた製薬が国に重要な産業の一つとなっており、バンコクなどの都市部では医薬が簡単に入手できるのである。このことが原因になっているのであろう、これらの薬草の利用も急速に忘れ去られてきているのは誠に残念である。しかし、在タイ当時、もと共産ゲリラ
<table>
<thead>
<tr>
<th>植物名</th>
<th>(利用部位)</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achyranthes aspera</td>
<td>(全草)</td>
<td>風邪，熱，マラリア</td>
</tr>
<tr>
<td>Ageratum coryzoides</td>
<td>(全草)</td>
<td>風邪，マラリア</td>
</tr>
<tr>
<td>Alternanthera sessilis</td>
<td>(全草)</td>
<td>咳血，尿道炎，蛇毒（外用）</td>
</tr>
<tr>
<td>Artemisia vulgaris</td>
<td>(葉)</td>
<td>利尿，月経不順，湿疹（外用）</td>
</tr>
<tr>
<td>Bidens pilosa</td>
<td>(全草)</td>
<td>インフルエンザ，風邪</td>
</tr>
<tr>
<td>Commelina benghalensis</td>
<td>(全草)</td>
<td>インフルエンザ，むくみ</td>
</tr>
<tr>
<td>Cyperus rotundus</td>
<td>(塊茎)</td>
<td>胸腹痛，月経不順，外傷（外用）</td>
</tr>
<tr>
<td>Dichrocephala integrifolia</td>
<td>(全草)</td>
<td>月経不順，蛇毒（外用）</td>
</tr>
<tr>
<td>Eclipta alba</td>
<td>(全草)</td>
<td>出血，利尿，慢性肝炎，湿疹（外用）</td>
</tr>
<tr>
<td>Eleusine indica</td>
<td>(全草)</td>
<td>関節炎，脳脊髄炎，外傷（外用）</td>
</tr>
<tr>
<td>Euphorbia hirta</td>
<td>(全草)</td>
<td>腸炎，消化不良，皮膚病（外用）</td>
</tr>
<tr>
<td>E. thymifolia</td>
<td>(全草)</td>
<td>上に同じ</td>
</tr>
<tr>
<td>Heliotropium indicum</td>
<td>(全草，根)</td>
<td>肺炎，咽喉痛，下痢</td>
</tr>
<tr>
<td>Hyptis suaveolens</td>
<td>(全草)</td>
<td>風邪，発熱，外傷・湿疹・蛇毒（外用）</td>
</tr>
<tr>
<td>Imperata cylindrica</td>
<td>(全草)</td>
<td>頭痛，胃痛，下痢，月経不順，むくみ</td>
</tr>
<tr>
<td>Ipomoea aquatica</td>
<td>(全草，根)</td>
<td>食中毒，利尿</td>
</tr>
<tr>
<td>Lantana camara</td>
<td>(根，葉，花)</td>
<td>インフルエンザ，高熱，皮膚病（外用）</td>
</tr>
<tr>
<td>Mimosa pigra</td>
<td>(全草)</td>
<td>神経衰弱，気管支炎，子供の高熱</td>
</tr>
<tr>
<td>Oxalis corniculata</td>
<td>(全草)</td>
<td>風邪発熱，肝炎，高血圧</td>
</tr>
<tr>
<td>Oxystelma esculentum</td>
<td>(全草)</td>
<td>気管支炎</td>
</tr>
<tr>
<td>Passiflora foetida</td>
<td>(全草，果実)</td>
<td>せき，むくみ</td>
</tr>
<tr>
<td>Phylia nodiflora</td>
<td>(全草)</td>
<td>尾梢炎，湿疹（外用）</td>
</tr>
<tr>
<td>Polygonum chinense</td>
<td>(全草)</td>
<td>腸炎，咽喉炎，蛇毒（外用）</td>
</tr>
<tr>
<td>Portulaca oleracea</td>
<td>(全草)</td>
<td>急性胃腸炎，湿疹（外用）</td>
</tr>
<tr>
<td>Scoparia dulcis</td>
<td>(全草)</td>
<td>風邪，熱</td>
</tr>
<tr>
<td>Siegesbeckia orientalis</td>
<td>(全草)</td>
<td>関節痛，高血圧，肝炎</td>
</tr>
<tr>
<td>Stachytarpheta indica</td>
<td>(全草)</td>
<td>尿道感染，結膜炎，リュウマチ</td>
</tr>
<tr>
<td>Striga asiatica</td>
<td>(全草)</td>
<td>下痢</td>
</tr>
<tr>
<td>Verbena officinalis</td>
<td>(全草)</td>
<td>マラリア，風邪</td>
</tr>
<tr>
<td>Vernonon cinerea</td>
<td>(全草)</td>
<td>風邪，蛇毒（外用）</td>
</tr>
<tr>
<td>Xanthium strumarium</td>
<td>(果実，全草)</td>
<td>インフルエンザ，湿疹（外用）</td>
</tr>
</tbody>
</table>

- 2 -
写真20 薬用とされる高地雑草 プクリョウサイ

写真21 薬用とされる高地雑草 ツルソバ

写真22 薬用とされる高地雑草 クマツツラ

写真23 薬用とされる畳地雑草 カッコウアザミ

写真24 薬用とされる畳地雑草 シチヘンゲ
（時に観賞用として栽培もされる）
写真25 薬用とされるつる植物
Oxystelma esulentum
（果実としても利用される）

写真26 薬用とされるクサトケイソウ
（全体に悪臭がある）

写真27 薬用とされる畑地雑草
シマニシキソウ

写真28 タイの重要な水生野菜アサガオナ
（食中毒に効果とされる）

写真29 薬用とされるツルノゲイトウ
の解放地区であったラオスとの国境に近いチエン県の山地に出かけたおり、歩いて中国に渡り、そこで薬草について学んだというメラ属の女性に会ったが、彼女の知識は村で大変珍重されていた。都市から遠く離れた地域では、今でも多くの植物が薬草として利用されているのであろう。病気を草木で治す人々が、まだまだタイには多いようである。

一方、このような民間薬とは別に、タイの伝統医術を修めた専門医の手で使用される薬草がある。バンコクのワット・ポーとワット・サムピアの2寺院にある古医術教習所がその教育の現場で、学習内容の中心は、ワット・ポーの回廊、柱、壁などには埋め込まれた大理石板上的碑文を理解することだそうだ。碑文は1832年に当時の王、ラーマ3世が作らせたものであるという。現在では書物として印刷もされているが、その筆者はどういった理解でないので、本稿では興味のある方にために、最近出版されたこの伝統医術を含む北部タイの薬草に関する本を紹介するに留めたい。


なお、本書はタイ語の執筆であるコペンハーゲン大学のBrun教授と、医師で植物学者であるオスロ大学のSchumacher博士を中心とする研究グループの成果で、巻末には528種の薬用植物のリストが一般名、用途、利用部分、調整法などとともに掲載しており、北タイにおける薬草を知る上で極めて貴重な文献になっている。ただし、“草と毒とは一重”であるから、これらの薬草を使用する場合には、タイの伝統医術を修めた専門医の指導が必要なことを承知しておいていただきたい。観光で飲んで死ぬような事態になっても筆者は一切関与しないことを付記しておく。

□野山の草木にも金が生る　〜民芸品などの材料となった植物〜

植物を素材にして作られる工芸品や民芸品は世界のそれぞれの地方で見ることができる。筆者が住む秋田県にも、桜の皮を用いた角館町のかばし細工、秋田杉の木目を生かした大館市の大曲わっぱ、稲葉うどんの産地としても知られる稲村町の川連（かわつな）漆器、木地山系伝統こげなど、世界のどこへ出しても通用するすばらしい伝統工芸品や民芸品がある。話のついていっては恐縮だが、県民の一人として、また、民芸品愛好家の一人として、ぜひこの場をかじってお知り頂きたい。

タイ国でも、竹や藤（ラタン）、チーク材などを使った見事な製品が数多く作られ、海外にも輸出されているが、ここではもっと素朴な地域振興や農家の副業程度に細々と作られている手工芸品や日用品を中心に紹介してみたい。素材はあくもの野山の草木である。

ある性的変形サカ属のシダ、Lygodium polystachyum（タイ名：リパオバー）、L.flexuosum（タイ名：ヤーヤイバオ）、L.salicifolium（タイ名：リパオバイ）、L.circinatum（タイ名：リパオバーンカイ）などの茎を用いたものに、ハンドバッグや帽子がある（写真30,31）。これは女王のプロジェクトとして長く振興に務めてこられたのが実を結んだもので、今日では南部のナコンシタマラート県の特産品になっている。製品は精巧をきめる、芸術品と呼ぶにふさわしい。また、湿地に生育するカヤツリグサ科の雑草Cyperus corymbosus（タイ名：コクサーンスエア）は、時に水田でも栽培され、各地でマットやハンドバッグの材料として利用されている（写真32,33）。カンボジアに近い中部のチャンタブリー県は有名な産地で、町
の特産品でもある。ホテアオイは池沼や河川など陸水環境の重要な雑草で、河川をせき止め灌漑、水中交通路、淡水魚生産などの妨げとなるばかりか、雨季に頻発する洪水の原因にもなるなど、防除に苦労している。この植物の若い葉や茄根、花などが野菜として利用されること、前畑で述べたが、成長しきった葉柄は民芸品や日用品の材料になる（写真34, 35, 36）。チャオプラヤ川中流域に位置するチャイナート県が産地として有名だが、全国各地でも作られている。

路傍や非農耕地で普通に見られ、時に農耕地にも浸入して畑作雑草となるオアイ科のホセバキシゴジカSida acuta（タイ名：ヤーカットバイヤーオ）の茎は、農家が自家用とするほうきの材料として用いられる（写真37, 38）。一方、Thysanolaena maxima（タイ名：コン）は、北部山地の路傍、林縁などに生育するイネ科の植物で、穂の部分がほうきに加工される。製品は主に市場で売られ、一部輸出もされている（写真39, 40, 41）。この植物の出穂期にあたる12〜2月頃に北部の山地を回ると、採取した穂を乾燥させるため路傍にびっしりと並べられて、足の踏み場もないほどの光景に出くわす。ケシ栽培を放棄した山地少数民族の重要な収入源になっているようである。

このほか栽培種も含めた多くの植物がドライフラワーの材料となっている。主な産地では、北部のチャンマイ県チェーマン村、東北部のウボンラチャタニ県ケムラーチ村などが有名で、国内消費のほかに台湾へも輸出されている（第5表）。ドライフラワーの生産は、山地民族が栽培していたケシの代替作物にするため、近年アメリカ農務省の援助により、カセート大学で研究が行われてきことが多いので、多くの成果が得られている。バンコクの同大学構内には少しでもケシ栽培に寄与できればとの目的で、北部少数民族の生産物を展示販売する店が設けられ、そこにドライフラワーも置いてある（写真42）。近くに行かれた方はぜひ立寄られ、ご協力をお願いしたい。

第5表 タイ国における主なドライフラワーの材料植物と生産量
（カセート大学高地農業プロジェクト、1984）

<table>
<thead>
<tr>
<th>学名</th>
<th>名称</th>
<th>習性</th>
<th>分布（標高）</th>
<th>生産量（kg乾物／年）</th>
<th>輸出</th>
<th>国内消費</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calamus屬</td>
<td>熱帯林の多年生雑草、東北タイ（350〜450m）</td>
<td>150</td>
<td>100</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eragrostis zylanica</td>
<td>低地一年生イネ科植物、北タイ（200〜300m）</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polycarpex corimbosum</td>
<td>低地の一年生雑草、北タイ（200〜300m）</td>
<td>450</td>
<td>150</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Themeda triandra</td>
<td>低地の一年生イネ科植物、北タイ（300〜400m）</td>
<td>300</td>
<td>150</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xyris indica</td>
<td>湿地の一年生雑草、中部・東北タイ（50〜100m）</td>
<td>300</td>
<td>150</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combretum quadrangulare</td>
<td>水田周辺の木本、中部・東北タイ（50〜100m）</td>
<td>400</td>
<td>150</td>
<td>550</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inula polygonata</td>
<td>林の一年生雑草、北タイ（1,000〜1,200m）</td>
<td>1,500</td>
<td>250</td>
<td>1,750</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leonotis nepetifolia</td>
<td>低地の一年生雑草、北・中部・東北タイ（50〜200m）</td>
<td>1,500</td>
<td>500</td>
<td>2,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lonas inodora</td>
<td>林の一年生雑草、北タイ（1,000〜1,200m）</td>
<td>300</td>
<td>150</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hibiscus radiatus</td>
<td>林のツル植物、東北タイ（400〜600m）</td>
<td>300</td>
<td>100</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lettispermum aggregatum</td>
<td>林のツル植物、東北タイ（50〜200m）</td>
<td>150</td>
<td>100</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphenanthus africanus</td>
<td>林のツル植物、東北タイ（50〜200m）</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blumea aurita</td>
<td>林のツル植物、東北タイ（50〜200m）</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pterocaulon rodolens</td>
<td>林のツル植物、東北タイ（50〜200m）</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioscorea hispida</td>
<td>乾燥林のツル、東北タイ（50〜200m）</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dipterocarpus intricatus</td>
<td>乾燥林のツル、東北タイ（50〜200m）</td>
<td>300</td>
<td>100</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
写真30 カニクサ属のシダの茎が手工芸品の材料となる

写真31 カニクサ属のシダの茎を利用
（ナコンシタマラート県の特産品）

写真32 手工芸品の材料とされる溝地植物
Cyperus corymbosus

写真33 C. corymbosusで作られたマット

写真34 葉柄が手工芸品の
材料とされるホテイアオイ

写真35 ホテイアオイの葉柄を
用いたハンモックの製作

写真36 ホテイアオイの葉柄で
作られたハンモック（完成品）
写真37 ほうきの材料とされる ホソバキソゴジカ

写真38 ホソバキソゴジカで作られたほうき（農家で自家用として使用される）

写真39 稔がほうきに加工される *Thysanolaena maxima*

写真40 稔が採取され路傍で乾燥される

写真41 *T. maxima* の稲から作られたほうき（主として市販される）

写真42 北部山地民族によってケシの代替として生産されたドライフラワー（カセサート大学構内売店）
さて、民芸品ではないが、チガヤの用途についても触れておこう。チガヤは刈り取った後に、乾燥させ、屋根ふきの材料として利用されている。タイの内陸部では、タイ湾沿岸地域が屋根ふきの材料にしているニッパヤシNipa fruticans（タイ名：チャーグ）の葉などの入手が困難であることもあり、稲わらなどに比べて長持ちし、室内的気温も上がりないなどのチガヤの長所を生かし、各地で広く使用されている。北部の山地では自家用として消費されるだけでなく、貴重な収入源として市販の加工も行っている（写真43, 44, 45）。

□植物を用いて雑草を防ぐ ～タイ式自然農法～

筆者は雑草防除の専門家ということになっている。そのせいかわりとはいえが、まだ除草剤が使用されていなかった時代に、農民はいかなる手段で雑草を防除してきたのか、という問題を考えると興味がつきます。もちろん手取り除草や除草剤を用いた機械的防除などにはない。それは耕作やマルチ、塩畑の使用などによる手段に対してなので、これからには、他感作用（アレロペッシー）物質など、植物に含まれる生理活性物質が大きくかかわっている場合が多いからである。

たとえば、日本では焼畑が各地で広く行われていた時代に、エゴマを他の作物と混植するあるいは輪作し、また、その地上部をマルチの材料に使用するなどして雑草防除に役立てていた。エゴマに含まれるベリラケトン（第6図）という物質は、雑草発生の抑制に効果があるのである。

筆者の住む東北の米どころ、秋田県仙北地方でも今では育苗箱で育てた稲苗や中苗を機械で移植するのが一般的な田植え風景となっているが、昭和30年代までは、苗代で育苗した成苗を家族総出で手植える姿が今でも見られる。寒冷気候のため生育期間の短い東北地方では、「苗半作」といわれた位に苗の良否は収量に影響し、苗作りには本田管理以上に気をつかったものである。苗代も、温帯圏苗代やビニール畑苗代となる以前は水稲苗が主で、苗代跡は通年にわたって稲が作付けられることなく、通し苗代として大事に管理されていた。当然、苗の取り終わった跡には雑草の発生をみるが、今のように適当な除草剤のなかった時代である。農家の大半は多くの野草の中から雑草発生抑制効果を示す草種を選び出し、それをマルチとして雑草の管理に利用していったという。その一つであるセリ科植物オオハナウドには活性物質としてウンベリフェロン（第7図）などのクマリン化合物が含まれている。そのほかにも、農民による雑草制御への植物利用例はいくつかあるが、今日の日本では、それら伝統技術のすべてが忘れ去られてつつある。タイの場合には、日本とは対照的に、現在でも農民の知恵として活用されているので、次にそのいくつかを紹介してみよう。

![Image](6.png)

第6図 エゴマに含まれる雑草の発生を抑制するベリラケトンの化学構造式

![Image](7.png)

第7図 オオハナウドに含まれる雑草の発生を抑制するウンベリフェロンの化学構造式

![Image](8.png)

第8図 シマミソハギに含まれるα-ナフトキノン（左）と除草剤ACN "モゲトン"（右）の化学構造式
写真43 屋根ふきの材料とされるチガヤ

写真44 たばねられ集荷されるチガヤ

写真45 すぐに利用できるように加工されるチガヤ

写真46 チガヤのマルチを利用したニンニクの栽培
（メーホンソン県リス族の村）
写真47 畑作物の強害雑草
ハマスケ

写真48 畑作に利用するとハマスケが減少するという
ゴマ畑

写真49 緑肥や飼料として利用されるギンネム

写真50 コーヒー園に植えられたギンネム
（葉は枝ごとに土壌に巻き込まれ総肥としている）
筆者がJICAの専門家としてバンケンにある農業局植物雑草研究部で、魚を殺す水生雑草の研究をしていった頃の話から始める。シマモソハギが強い殺魚性を示すことが明らかとなったので、その活性成分を分析するため、多量の材料を周辺農家の稲刈り跡の水田から採取することにした。ことのほか多くのシマモソハギが繁殖していたが、その時、どこからともなく水田の持ち主とおぼしき一人の農民が魚を取る網を手にしながら現れ、何いや筆者に話しかけてくるわけはない。こちらは相手の話すタイ語が全く理解できないので、同行していたタイ人のカウンターパートに通訳を頼む。

「オマエラナツシテイルノカ。コノクサハ、タダノクサトハチガウノダ。コノクサタタンボニスキコメカ、クサガサッパリハエナイノダ。トクニ、モニハパツカンニキグザ。インテクリニハ、ガイジナクサナノダ。」

くだんの農民の語ったところは、ざっとこんな内容であった。その時は半信半疑で聞き流していたのだが、後日、シマモソハギに含まれる殺魚性成分がGC-MS分析の結果、α-ナフトキノンと同定された（前号参照）ときには、飛び上るほど驚かざるをえなかった。「コノクサハ、タダノクサトハチガウノダ」と教え順にように語りかけてきた農民の言葉がまばらどとよまがえってくるわけではない。α-ナフトキノンは、現在日本の水田でも「モゲトン」の商品名で使用されている除草剤ACNと極めて類似した化合物で（第8図）、魚獣がやや強いものの激しさに対し特効薬になっている。タイの除草剤が農薬販売店からはなく、自然の恵みによって無料で手に入っているといえよう。ただただ感心するばかりである。

東南アジアで広く行われている雑草制御法の一つに、チガヤを用いたマルチ栽培がある。この植物がタイで薬用や屋根ふきの材料として利用されていることは前述したが、各地ではマルチの材料にもしている。特に北部山岳地帯の畑地では、チガヤのマルチを利用したイチゴやニンニクなどの栽培がみられる（写真14）。チガヤは地面を被覆することによる物理的な効果のほかに、フェノール化合物が多く含まれるため、雑草の発生抑制には稲わらなどに比べて効果が一段と高いといわれている。

カヤツリグサ科に属するハマスゲCyperus rotundus（タイ名：ヤーハイオム、写真47）は、タイに限らず世界の強害雑草のトップにランクされているほど防除の困難な雑草種で、日本でも関東地方以南ではしばしば問題となる重要な畑地雑草である。タイの畑作地帯では、この雑草が繁殖して作物の栽培に支障をきたすと、翌年には油料作物であるゴダメシアンindicum（タイ名：セーガー）を栽培するという（写真48）。その結果、ハマスゲの密度は徐々に減少し、再び他の作物が栽培できるようになるのだそうだ。植物の生育を抑制する物質はゴマンに含まれていることは既に筆者らが明らかにしているが、活性成分の同定までには至っていない。これからも今もって立派に活用されているタイ農民の知恵である。

ギンシネムLeucaena leucocephala（タイ名：クラディン、写真49, 50）は南アフリカ原産のマメ科の小高木で、葉が緑肥や飼料として広く利用されている。この植物の葉を土壌に餌き込んだ場合、分解して作物の養分として利用されるほか、雑草の発生を抑制する効果を期待されている。それは、この植物に含まれるアミノ化合物ミモジン（第9図）が、雑草の生育を抑制する作用を示すからである。また、飼料としてそのまま家畜に食べさせると、同じ物質が作用し、家畜
の頭の毛が抜け落ちるなどの中毒を引き起こす原因になるという。また、タイでは生かきの料理にこの若芽が生のままラム（マナオ）とともに添えて出され、一緒に食べる習慣がある。生かきは食欲をそそられるタイ料理の一つだが、日本の観光客などは食中毒を恐れてまったく口にしないらしい。食べることに貪欲な筆者は何回か挑戦し、いくらとなく下痢をするはめに陥ったが、あるときギンネンと一緒に食べると決して下痢などしないという貴重な発見をした。ミモジンがカキの解毒と関係があるのかも知れない。

タイ国は現在工業化をめざして猛烈な発展を続けている。その結果、農村から都市部への人口の流出が著しく、人手不足から除草剤などの農薬も急速に普及しつつある。やがては日本と同様に、これらの伝統技術も忘れ去られてしまう日がくるだろう。その前に、できるだけ農民達の知恵を学び、記録しておくと筆者は努力しているが、このような目的のために調査旅費を得るのは非常に難しい。日々がもどかしい今日このごろである。（次号につづく）
アマゾンの薬草

昨年の12月20日付で第2信を送ったのですが、このほど事務局に届いていないことが判りましたので、同じ内容をもう一度したため、第2信としてお届けします。当地の郵便事情は昔と違ってかなり改善されたと思われていますが、多分、クリスマスカードの発送信の真剣中であったためでしょうか。それとも写真が入ってから分厚くなっていないか、いずれにしても残念です。

さて、アマゾンには昔からインディオが用いていた薬用植物に加えヨーロッパ、日本などから移住者たちが持ち込んだ薬草類が合計180種と500種ともいわれるほど存在しています。拙宅のベランダにも日系Y氏から頂戴したドクダミ（十葉：ジュウヤク）の鉢植観賞用としておいています。

本稿では、これら導入薬用植物ではなく、昔からインディオが用いていたと考えられる薬用植物について述べることということ。何分にも数が多いので、とりあえず2～3の植物の解説と、20種ほどを「薬用植物（その1）」として表にまとめてみました。

1. Guarana（ガワラナ、ガラナ）
学名Paullinia cupana Kunth
Sapindaceae（ムクロジ科）の植物。南米原産の灌木で、つる性の変種もある。種子中にカフェイン5％前後、タンニン約8％、サポニン、油脂などを含む。

多量のカフェイン（コーヒーの約3倍）を含有するため、興奮剤として用いられ、また、神経強壮剤や偏頭痛剤に使用される。タンニンが多いので、腸疾患など薬用にも供される。

インディオは、乾燥種子をうすに軋絞って、粉末にして若干の湿気を加えて常温に保存する。有名なピラルクー（淡水魚、太平洋大西洋では世界最大）の舌を乾燥させたヤスリ状のオロシがね？を使って粉にして飲んでいる。また、ガラスーコ、あるいはガラナと呼ばれる清涼飲料は、ガラナエキス（種子を水で煮つめたエキス）を炭酸水で溶かし、甘味を加えたものだが、ブラジルではコーラ類より需要が多い。そのため、しばしば品不足をきたし、法令で決められている3％のエキスの混入をも守られないようである。しかし、ガラナの産地であるマナウス（アマゾン州の州都）で飲むガラナは3％以上のエキスが入っているせいか、一味もがって美味、暑さもやわらげてくれるので旅人は格好の飲料といえる。

なお、ガラナ種子は日本にも輸出されていて、ドリンク剤、チューハインガム、カフェイン原料等に用いられている。

照った種子の表皮を除き、そのまま一口に含む（カチ栗を口中にするときのように）と、次第に溶けて、やや苦味があるものの、なんとなくスッキリした感じがする。また、1リットルのビンガ（焼酒）に30～50粒の種子を2～3カ月間漬けておくと、ウイスキー色のリキュー

ルになる。これを毎晩一杯やれば、必ずしも精力回復に効ありと説く御仁もいる。
2. Muirupama、Marapuama（ムイラプアマまたはマラプアマ）
学名Liriosma ovata MIERS

Dlaccaceae（ボロボロノキ科）の植物。アマゾン流域に自生する低木で、根部に苦味質、精油、アルカロイドを含有し、生薬エキスは陰茎、神経衰弱に効ありといわれている。有効成分は残念ながらまだ単離されていないようだが、ドイツ（当時西ドイツ）は20年も前から輸入しており、日本にもその製品が入っているという。強壮、催淫薬として好評家にてもてはやされているが、ガラナと同じように、ビンガムで乾燥根部の切片を渋酒に加入する。

ムイラプアマは、元来原始林（比較的原林）地の低木として自生しているものだから、急激な採取は環境保全のうえで問題であろう。ガラナはすでに栽培可能となっているが、この植物についてはそこまでいただっていない。今後、需要増が見込まれるとならば、早期に栽培化への取り組みを始めることが望ましい。

3. Ipecacuanha（イベカアクニャ：吐根）
学名Cephaelis ipecacuahua RICHARD

Rubiaceae（アカネ科）はブラジル原産の低木（草生）で、原始林地に自生、根部（吐根）を利用。ガラナやマラプアマと異なり、19世紀後半かられっきとした医薬品になっており、アメーバ赤痢の特効薬として重要されている。

主成分のエメレンは、弱アルカリ性溶液において10～20万倍に希釈してもよく、アメーバー赤痢菌を死滅させるといわれる。

イベカアクニャの効能に関し、次のようなエピソードを紹介しよう。

1980年頃に、アマゾンを旅行中の日本人医師K氏が中流の田舎で罹患したときの出来事である。所持していた薬品の底をつき、あとはただ精根つき果てた身体を横たえて、回復を待ただけという心細い状態になっていたおり、近所の土着民が一掴りの植物の根を差し出し、皆で飲み合うように誘ってくれた。ウーラにもかかわる思いで、その根を同行者に並べてもらい服用したところ、立ち上がりにそれまで続いていた下痢が止まり、以後順調に健康を取りもどしたという。ベラクに帰ったK氏は、さらに他に資料にありが、自分を助けた根がイベカアクニャであることを確認するとともに、先住民の知恵に感心したさまを、当時の方同行者であったA氏が語っている。

今から100年近く前、すなわち1900頃のブラジルは年間200トン程度の乾燥根を世界に輸出していた。ゴム樹と同様1900年代にマレー半島に移植され、ゴム園の下草としての栽培が試みられたが、なぜかエメレンの含有量が少なく、マレー半島では商品作物として成立しなかった。

ブラジルの統計（IBGE）によれば、1989年のブラジルからの輸出は乾燥根で17トンであっただけで、1990年には僅か2トンという低落ぶりである。

イベカアクニャは植物として系統変種も多い。明確な種を栽培に移行させるため、目下EM BRAPA-CAPTUで品種系統の収集、栽培試験が行われている。

このほか別表の11番にあるMutamba（現地名）のように発乳病に効くといわれるアオギリ科の植物など、おもしろい薬草もありますので、いずれ無理をみて記述させていただきます。

にしろ4億ヘクタールといわれるアマゾンのなかで、インディオの分布地域は8,200万ヘクタール程度にとどまり、人数も僅か22万人が住むだけ。広大な原始林に覆われたアマゾンには、まだまだ調べられない資源が存在すると考えられます。
今のうちになんとなく "種の保存" "遺伝子源保存" を目的に100万ヘクタール単位の聖域を自然環境別に5〜6カ所でも残し、あとは有効に使うという考えはいかがでしょう。私どもの研究協力の中にも、薬用植物の同定と利用という大課題があり、そのなかから将来ひょっとするとエイズウイルスの抗体を発見するかも知れませんし、ガン細胞の増殖物質を阻害する物質なども見つからないとはいえません。それらの植物をなんとか栽培にこぎつけ、エコロジーの保全と住民の経済的向上、ひいては人類社会への貢献と連きながら1992年以降の夢を見ているところです。
アマゾンの薬草（その一部）

<table>
<thead>
<tr>
<th>番号</th>
<th>学名</th>
<th>現在名</th>
<th>現在利用される部位</th>
<th>現にわれる薬効</th>
<th>現在地名の邦訳</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anacardium giganteum</td>
<td>Huac ex Engl (Anacardiaceae: セリナ科)</td>
<td>Cajui</td>
<td>カジュイ</td>
<td>麻痺、腫瘤、動静脉瘤、</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>野生カシュの一種（小果）</td>
</tr>
<tr>
<td>2</td>
<td>Bauhinia epleandens</td>
<td>H. B. K (Leg. Cassalp: マメ科)</td>
<td>Escada da jaboí</td>
<td>raiz e casca</td>
<td>木の根、樹皮</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ねく、髄下</td>
</tr>
<tr>
<td>3</td>
<td>Brosimum alicafoellum</td>
<td>(Huber) Duke (Moraceae: クラ科)</td>
<td>Morue da terra firme</td>
<td>latex e casca</td>
<td>肉脂、樹皮</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>肉脂、樹皮</td>
</tr>
<tr>
<td>4</td>
<td>Campomanesia floribunda</td>
<td>Benth (Leg. Cassalp: マメ科)</td>
<td>Acapurana</td>
<td>casca</td>
<td>枝下、駆虫剤</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>にせアカブの葉</td>
</tr>
<tr>
<td>5</td>
<td>Codiaeum variegatum</td>
<td>Benth—pectranthus</td>
<td>Anador</td>
<td>folha</td>
<td>神経痛、</td>
</tr>
<tr>
<td></td>
<td>barbatum</td>
<td>Benth</td>
<td></td>
<td></td>
<td>皮膚の腫瘍</td>
</tr>
<tr>
<td></td>
<td>(Labiatae: しつ科)</td>
<td>(Labiatae: ムシ科)</td>
<td></td>
<td></td>
<td>草木の芯</td>
</tr>
<tr>
<td>6</td>
<td>Costus spiralis</td>
<td>Rox (Zingiberaceae: ショウガ科)</td>
<td>Canarana do bre</td>
<td>caule</td>
<td>リュウマチ、利尿剤</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>根</td>
</tr>
<tr>
<td>7</td>
<td>Curatillia guianensis</td>
<td>Aubl (Lecythidaceae: サガリス科)</td>
<td>Taurari</td>
<td>casca e folha</td>
<td>糖尿病</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>腎部</td>
</tr>
<tr>
<td>8</td>
<td>Cyperus odoratus L. ou Cyperus corymb-</td>
<td>(Gramineae: イネ科)</td>
<td>Piptocha ou piriri</td>
<td>raiz</td>
<td>非</td>
</tr>
<tr>
<td></td>
<td>rosus</td>
<td>(Rosaceae: サトイ科)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>根</td>
</tr>
<tr>
<td>9</td>
<td>Dracontium asperum</td>
<td>C. Koch ou (Arecaceae: カヘイ科)</td>
<td>Taja de Coba ou</td>
<td>raiz</td>
<td>非</td>
</tr>
<tr>
<td></td>
<td>sp</td>
<td>(Arecaceae: カヘイ科)</td>
<td>Batata de coba</td>
<td></td>
<td>根</td>
</tr>
<tr>
<td>10</td>
<td>Elephantopus scaber</td>
<td>L ou Elephantopus mollis (Compositae: キク科)</td>
<td>Lingua de vaca</td>
<td>cha de raiz</td>
<td>水泡病</td>
</tr>
<tr>
<td></td>
<td>(Compositae: キク科)</td>
<td>Rhoeo</td>
<td></td>
<td></td>
<td>牛の舌の意</td>
</tr>
<tr>
<td>11</td>
<td>Guazuma ulmifolia</td>
<td>Lam. (Sterculiaceae: オオギ科)</td>
<td>Mutamba</td>
<td>decort du entreacesa</td>
<td>皮膚病</td>
</tr>
<tr>
<td></td>
<td>(Sterculiaceae: オオギ科)</td>
<td>(Bignoniaceae: オオギ科)</td>
<td></td>
<td></td>
<td>根</td>
</tr>
<tr>
<td>12</td>
<td>Melastomum campanulatum</td>
<td>L. (L.F.) Baker</td>
<td>Sao Joao Caa</td>
<td>folha</td>
<td>腎部</td>
</tr>
<tr>
<td></td>
<td>(Melastomaceae: ティ葉科)</td>
<td>(Melastomaceae: ティ葉科)</td>
<td></td>
<td></td>
<td>腎部</td>
</tr>
<tr>
<td>13</td>
<td>Microtus debilis</td>
<td>Sw. (Phyllostachys: サマギキ科)</td>
<td>Erva mijonja</td>
<td>folha</td>
<td>腎</td>
</tr>
<tr>
<td></td>
<td>(Phyllostachys: サマギキ科)</td>
<td>(Phyllostachys: サマギキ科)</td>
<td></td>
<td></td>
<td>皮</td>
</tr>
<tr>
<td>14</td>
<td>Miconia hirsutissima</td>
<td>DC. (Compositae: キク科)</td>
<td>Sucuriju</td>
<td>folha</td>
<td>皮</td>
</tr>
<tr>
<td></td>
<td>(Compositae: キク科)</td>
<td>(Compositae: キク科)</td>
<td></td>
<td></td>
<td>根</td>
</tr>
<tr>
<td>15</td>
<td>Myrica piaucas</td>
<td>DC. (Myricaceae: フォモ科)</td>
<td>Pedra uma caa</td>
<td>folha</td>
<td>皮</td>
</tr>
<tr>
<td></td>
<td>(Myricaceae: フォモ科)</td>
<td>(Myricaceae: フォモ科)</td>
<td></td>
<td></td>
<td>根</td>
</tr>
<tr>
<td>16</td>
<td>Phyllia glomerata</td>
<td>(Sprag) pedunices</td>
<td>Corrente</td>
<td>folha</td>
<td>皮</td>
</tr>
<tr>
<td></td>
<td>(Amaranthaceae: ヒヨ科)</td>
<td>(Amaranthaceae: ヒヨ科)</td>
<td></td>
<td></td>
<td>根</td>
</tr>
<tr>
<td>17</td>
<td>Spermacoce taurifolia</td>
<td>(BBH) decandrou</td>
<td>Capitós de uma noasa</td>
<td>folha</td>
<td>皮</td>
</tr>
<tr>
<td></td>
<td>(Mimosaceae: ジュニア科)</td>
<td>(Mimosaceae: ジュニア科)</td>
<td></td>
<td></td>
<td>根</td>
</tr>
<tr>
<td>18</td>
<td>Turnera ulmifolia</td>
<td>L. (Turneraceae: テリメ科)</td>
<td>Damiana ou Albinia</td>
<td>folha ou raiz</td>
<td>腎</td>
</tr>
<tr>
<td></td>
<td>(Turneraceae: テリメ科)</td>
<td>(Turneraceae: テリメ科)</td>
<td></td>
<td></td>
<td>根</td>
</tr>
<tr>
<td>19</td>
<td>Uncaria guianensis</td>
<td>J. F. Gmel (Rubiaceae: アカネ科)</td>
<td>Unha do gato</td>
<td>folha</td>
<td>腎</td>
</tr>
<tr>
<td></td>
<td>(Rubiaceae: アカネ科)</td>
<td>(Rubiaceae: アカネ科)</td>
<td></td>
<td></td>
<td>根</td>
</tr>
<tr>
<td>20</td>
<td>Vernonia condensata</td>
<td>Baker (Compositae: キク科)</td>
<td>Boldo Africano</td>
<td>folha</td>
<td>肝炎、腫瘤</td>
</tr>
<tr>
<td></td>
<td>(Compositae: キク科)</td>
<td>(Compositae: キク科)</td>
<td></td>
<td></td>
<td>肝炎、腫瘤</td>
</tr>
<tr>
<td>21</td>
<td>Vernonia scabra</td>
<td>Pers. (Compositae: キク科)</td>
<td>Assa peixe</td>
<td>toda a planta</td>
<td>リュウマチ</td>
</tr>
<tr>
<td></td>
<td>(Compositae: キク科)</td>
<td>(Compositae: キク科)</td>
<td></td>
<td></td>
<td>魚</td>
</tr>
<tr>
<td>22</td>
<td>Vouacapoa americana</td>
<td>Aubl. (Leg. Cassalp: マメ科)</td>
<td>Acapu</td>
<td>casca</td>
<td>魚</td>
</tr>
<tr>
<td></td>
<td>(Leg. Cassalp: マメ科)</td>
<td>(Leg. Cassalp: マメ科)</td>
<td></td>
<td></td>
<td>魚</td>
</tr>
</tbody>
</table>

※筆者は国際協力事業団「ブラジル・アマゾン農業研究協力計画」のチーフ・アドバイザーやとして同国パラ州ペレーヌ市に駐在。
「海外農林業開発協力促進事業」制度のご案内

民間企業ベースで農林業投融資を支援

(1) 本事業は、海外協力事業の推進等本邦民間企業の農林業分野における海外投資を促進することを目的として、昭和62年度から（社）海外農業開発協会が実施している農林水産省の補助事業です。

(2) 本事業の概要及び適用事例については右の図に示したとおりで、貴社ご検討中の発展途上国における農林業開発事業についてのご相談に応じることができます。

(3) 民間企業のメリットとなる本事業の特徴は以下のように整列できます。

① 海外農業開発協会のコンサル能力を利用できる。
② 現地調査経費、国内統括検討などにかかる経費を節減できる。（1/2補助）
③ 本事業の調査後、開発協力事業等政府の民間融資制度を利用する場合には、その事務がスムーズに進む。

(4) 本事業による調査後、当協会は貴社のご要請に応じて、政府系融資資金の調達のお手伝いをします。

(5) なお、平成2年度の本事業による調査実績は次のとおりです。

1) 天津農業開発事業調査 8) フィリピン水産生産事業調査
2) ダイ竹林総合利用開発事業調査 9) 東北タイ農業開発事業調査
3) 中国ステビア生産事業調査 10) マレーシア鉄砕物生産事業調査
4) スリランカ花芽生産事業調査 11) アルゼンチン畜産物加工事業調査
5) アルゼンチン肉牛飼育事業調査 12) マレーシア熱帯高地収芸作物生産事業調査
6) マレーシア穀物生産事業調査 13) インドネシア加工用竹生産事業調査
7) フィリピンアボカド生産事業調査

相談窓口：（社）海外農業開発協会 第一事業部
TEL 03-3478-3508
農林水産省 国際協力開発対策課
TEL 03-3502-8111（内線 2776）
民間企業・団体

海外における農林業投資案件の検討

（例1）
農作物の栽培、生産の実施に当たって対象作物、対象地域等企業内における基礎的検討が必要

（例2）
農作物の生産・輸出事業の実施に当たって、当該品目について栽培～加工～流通まで広範な領域についての検討が必要

（例3）
現地調査法人から遊休地の有効利用について協力依頼を受けており、農林業開発の可能性の検討が必要

（例4）
企業内において農業開発の方向性が定められており、詳細な事業計画の策定が必要

海外農林業開発協力促進事業
（農林水産省補助事業、補助率：1/2）
（社団法人 海外農業開発協会が実施）

農林業投資案件の発掘・形成

1. 現地調査（当該企業・団体の参加も可）
2. 国内検討（専門家による検討）

調査報告書

調査経費の負担
国内検討、現地調査及び報告書作成にかかる総経費の1/2を補助

資金調達先
JICA（開発協力事業） OECF 輸出銀行 その他
《日債銀》は、みなさまの有利な財産づくりのお役に立つワリシン・リッシンを発行しています。また、産業からご家庭まで安定した長期資金を供給することによって、明日のめたかな社会づくりに貢献しています。

[詳細な情報がここにあります。]
ネズミ退治に抜群の効果!!

○チュークリン（強力粘着剤）

強力粘着剤を使用したネズミ捕り。ネズミの動きで自然に取まります。
寄生するダニやノミなども同時に処理できるのでたいへん衛生的です。

○イカリネオラッテ（殺虫剤）

ネズミの嗜好物が入っているので効果は抜群。耐水性の袋に入って
いるので濡れている場所でも使用できます。

イカリ消毒株式会社
本社／〒160 東京都新宿区新宿3－23－7
☎03（3356）6191代

あらゆる殺虫剤がそろう
殺虫剤の総合メーカー

昭和27年創業以来、食糧倉庫
専用殺虫剤並びに、ラテミン
投与器をはじめ、農薬
地用リン化亜鉛剤の強力ラ
テミン、硫酸タリウム、モノ
フロール酢酸ナトリウム、
インデンディオンの各薬剤等、
あらゆる殺虫剤の開発と製
剤の研究、改良に努力をつ
づけております。

製造元 大塚薬品工業株式会社
本社・東京都豊島区西池袋3－25－15 I B 第一ビル
大阪支店・大阪市住川区西中島3 ～19 ～13 第二ユマビル
川越工場・埼玉県川越市下小坂３０４