中・米両国の穀物協定と国際市場への影響
家畜飼料としての剥皮されたサトウキビ

社団法人 海外農業開発協会
中・米両国の穀物貿易と国際市場への影響 1

フィリピン 種豚を初めて輸出 .. 3
インドネシア 移住農民とリンクしたアルコール生産を計画 3
インドネシア 尿素輸入国へ転落か ... 4
インドネシア ココナッツ栽培に取り組む 5
パングラデシュ I D A融資でマングローブ植林 5
国際ゴム研究グループ 需要拡大で天然ゴム増産を強調 6
パプア・ニューギニア 砂糖工場建設へ 7
マレーシア、フィリピンでヤシ由来の石鹸、洗剤原料生産計画 8
ASEAN 合弁マレーシア尿素計画に調印 9
ジュート生産国 ジュートのOPEC版創設で会合 10
アジア太平洋森林開発グループ 本部をマレーシアに設置 10

家畜飼料としての剥皮されたサトウキビ 11
中・米両国の穀物協定と国際市場への影響

米国が国産小麦を中国へ輸出するための穀物協定（81－84年）に調印する動きを活発化させている。伝えられる数値は年間600万～800万トンで、ほかに100万トンの追加供給が認められる（総量の10～15％ほどもあること）。

中国が小麦輸入を図るため穀物協定を結んでいる国は、77年の①オーストラリア（78－81年，250万トン）を皮切りに②カナダ（79－81年，840万～1,050万トン）③アルゼンチン（79－84年，80万～120万トン）④フランス（81－83年，50万～70万トン）の4カ国で。これに米国が加われば、現在、世界で小麦の輸出が可能とみられる主要国の全てと長期買い付けのパイプラインをつなぐことになる。

米国が中国との協定に積極的であるのは、国内の余剰になりがちな小麦の有力消費国として、また近い将来ほかの米国産穀物を売り込むうえで、いずれも地元の大きな成長市場との読みがはたしていよう。

中国としては南部地域の洪水、北部地域の乾燥といった天候不順、さらには最近の都市化にみられる食生活の西欧化傾向、食糧政策の見直しなどの要因から、穀物の輸入は長期にわたり増加させなければならない状況にある。

中国は60年代のはじめの凶作以来、一貫して輸入をしてきているが、これは構造的なものからくる結果で、そこには次のような特徴がみられる。つまり、60年代前半は500～600万トン、66－70年間は100～500万トンの輸入で相対的に安定していたのに、70年代に入ってからは、75－76年の220万トンから77－78年の700～900万トン、そして80－81年には1,500万トン（予想）と増幅が拡大し、60年代の最大輸入量600万トンに対し約900万トンも格上げ増加の勢いに推移している。これら数字にみられる最近の中国の穀物輸入は、増加幅を高め不安定であるばかりか、それが大量であるため、世界の穀物貿易市
場に大きな影響を及ぼすまでになっていた。ちなみに80～81年度の中国の穀物買い付け予想（主に小麦）は1,500万トン。これは穀物貿易市場での取引量の約8%に相当し、世界小麦相場の指標であるシカゴ相場が高騰させている。商社筋によると、現在の中国の買い付けは75年にソ連の大量買いで記録した1ブッシュル=6ドル45セント（1ブッシュル=約27キロ）以来の高値をもたらし、今後もしばらくは大豆等の不作もあって、さらに値を高めていくよう。

中国の穀物貿易の増加幅の拡大は輸入に関らず穀物輸出についてもみられる。70年代中期以後の同国の輸出パターンは、コメを売り小麦を買って相対的価格の差異部分でバランスを合わせるといった商社的な穀物貿易の展開をしているが、穀物の純輸入に支出を余儀なくされる外貨は、現在年5～7億ドルと推算され、この外貨負担は4つの近代化を目標にする政府に重くのしかかってきている。しかし、開放化された国際経済環境は中国にとっては有利であるため、これにより以上に弾力的かつ商社的な穀物貿易を推進していくものと予想される。中国自身に構造的な面で克服せねばならぬ問題が山積しているとしても、今後、世界穀物市場での大量買い付け国としての座を去ることはないであろう。

さて、米国が中国との間に穀物供給協定を調印することになれば、すでに今年に入って300万トン以上の小麦を中国に売り渡し、両国のペイズは数々をつづったとはいえ、他の小麦輸出国に与える影響は見逃せない。従来中国は穀物の輸出国にとって自由市場的な対象であり、オーストラリアをはじめとする米国以外の諸国が先行していた。米国が長期契約を結ぶことは中国における先発諸国の既得権を相当に低下させる。オーストラリアがソ連に対する穀物禁輸措置にからかって米国の動きを受け入れ、過去20年間のわりにオーストラリアが中国向け穀物の主要輸出国であると一時の姿勢を強くしているのは、先発組が米国の参入を脅威として受け止めているからである。今年、小麦はほかの穀物の減産をよそに23億6,000万ブッシュルと過去最高の収量を記録すると予想され、シカゴ相場は一層緊いつな根を示している。日本としても年間2400万トン（うち小麦500万トン）の穀物を輸入している実情から、価格が高騰を続ければすぐに消費者安値引き上げに波及していくとも、来年度以後、価格面で苦しい立場に立たされる可能性は十分である。中米穀物協定の今後なりゆきが注目される。（日中食糧・農業技術交流委員会　事務局長　小林　一彦）
フィリピン 種豚を初めて輸出
発注者はFAO

フィリピン産の種豚がブータンのFAOプロジェクトに供されることとなった。フィリピンからの種豚輸出はこれが初めて。

輸出するのはマニラ南方ラグナ州サンペドロのHoliday Hills Stock and Breeding Farmで、Duroc種の未経産雛豚16頭と雛豚6頭が空輸される。FAOは成績が良ければ引き続きHoliday社の種豚を開発途上国へ導入する方針と伝えられる。

Holiday社の原種豚の導入先は不明だが、フィリピンがこれまで輸入してきたように種豚輸出は優良原種をもつ先進農業国が中心に行なってきたものであり、本輸出の発注者は国連の農業専門機関FAOとあってフィリピンの関係者は意を強くしている。

インドネシア 移住農民とリンクしたアルコール生産を計画

関係筋によると、最近インドネシアのハビビジュ国務相はキャッサバ、甘藷から生産するエチルアルコールとガソリンを混合した自動車燃料開発の計画を明らかにした。

同計画骨子は、ジャワ島から他島へ移住した農民を中心に原料農作物を栽培普及し、全国に約2,000の小規模工場を建設するもの。原料栽培の移住民とのリンクは、従来から進めてきた移住計画がうまく進展しなかった理由として、
生産物の集買体制が不備だったとの観点から、混合燃料用に栽培普及し、それを買い上げれば、一石二鳥の効果になるとの考えによる。
具体的取り組み予定として、まず専門家チームを設置し原料、アルコール化技術などの検討を行い、来年には年産5,000万t程度の実験工場を建設する。
なお、同国は石油輸出国だが、原油生産は77年3月をピークに減少傾向にある。一方国内消費は年12～13%の率で上昇しているため、輸出量は下降線上にあり、このままいくと10年後には輸入の必要もあるため、石油の代替エネルギー開発は重要度を増してきた。

インドネシア 尿素輸入国へ転落か

業界筋によれば、77年より尿素を輸出してきたインドネシアが内需増と生産減で輸入を余儀なくされている。
同国の尿素生産能力は、国営肥料会社P.T.プブリ・スリウィジャヤ（プスリ）など主にスマトラを中心とした6工場あわせて234万トン。生産が順調に伸びていた本年初頭の見通しでは、生産は200万トンを超えるのに対し国内需要は160万トンと輸出余力があった。これが一転して輸入をしなければならなくなったのは、スマトラの生産工場が天然ガス不足で稼動率を下げ、生産目標は160～170万トンへと下方修正させるところに、その一方で今年の米の生産量が2,000万トンと史上最高を記録するなどで尿素消費が増大したため需給バランスを崩したものとみられる。
政府は5月から尿素輸出を禁止したため今のもろ国内での不足による混乱はないものの、プスリ社は当初予測に基づきインド、バングラデシュ、フィリピン、マレーシアとの間で合計30万トンに及ぶ輸出契約を結んでいたため、この面での影響は避けられそうにない。昨年の契約分も含め本年は40万トンの輸出を予定していたが4月までの船積みは20万トンを下回る量で完全履行できない状
海外農業開発１９８０－１０

態にある。輸入必要量は来年の分を含め５０万トンとされる。

インドネシア ココナッツ栽培振興に取り組み

77年よりココナッツ製品の輸入国に転落したインドネシアは、ココナッツ開発計画を策定、栽培振興に取り組んでいくことになった。

同計画では、まず計画推進体制の確立を図るとともに6州で小農栽培を支援する事業に着手する。事業概要は次の通り。

○本部事務所、15の州事務所の設置
○70のCoconut Working Centerの業務強化
○180ha規模の種子農園を3カ所に設置
○コブラ乾燥、加工に関する研究実施
○北部スラウェシ、中部スラウェシ、南部スラウェシ、ランソン、アチェ、マルクの6州の4万戸農家を対象とした栽培資金の貸し出し、技術指導

小農支援の目標面積は、①優良品種（うち85％は高収量ハイブリッド種）による新植、改植から収穫に至るまでの支援＝37,600ha ②現地種の植付＝3,500ha ③既存成園の復興＝38,000ha

同事業は農業省農園総局が実施し、総経費9520万ドル相当額で、すでに世銀より4600万ドルの融資（年利9.25％、返済期間は15年を含む20年）が決まっている。

バングラデシュ　IDA融資でマングローブ植林

バングラデシュは第2世銀（IDA）より融資を受けマングローブ開発事業を拡大実施する。
IDA融資による事業はチタゴン、ノアカリ、パトアカリ、ベリサル地区の沿岸地帯で10万エーカーの新植林と既存林8万エーカーの維持管理を図るとともに薪、バルブ用材、木材を生産するもの。

事業経費は1720万ドルうちIDA融資は1100万ドル。実施機関は森林局で、86年までの事業実施による薪生産量は、年間12万4000トンの輸入石油を代替すると見込まれている。

国際ゴム研究グループ

需要拡大で天然ゴム増産を強調

国際ゴム研究グループ（IRSG）によると、世界のゴム消費は81年の1305万トンから90年には1900万トンへの増大を予測し、天然ゴム増産へ向けての積極的な取り組みを行なうべきだとしている。

同グループは9月29日から6日間、26のメンバー国代表、13の国際機関の代表など約250人の参加により第26回年次会合を開催。ゴム生産・消費の動向、研究・開発事情や拡大するタイヤ産業への対応などを協議し、生産国、消費国双方は増大する天然ゴム需要に応えるよう同ゴムの生産拡大の必要性を確認した。

それにとどまらず天然ゴムは、ゴム需要の約30%のシェアを占めており、将来も同様のシェアを保持するには天然ゴム生産を増大させなければならない。さらに、タイヤ業界は天然ゴムをより多く使用する種類のタイヤ（ラジアル・タイヤなど）の製造拡大方向にあるなど天然ゴムのシェアそのものも大きくなる傾向にある。

こうした背景のなかで、天然ゴム生産国は増産姿勢を強めている。今年次会合で81年の予定生産量400万トンを90年500万トンへ増大させる方針を導き出したことは、単なる纸上の計算からではない。最大の天然ゴム生産国
マレーシアではゴム樹をオイルバームやカカオなどに植え替えるベースを設ける農園企業が出てきており、また81年から始まる第4次マレーシア計画でもゴム樹栽培のための新規土地開発、小農によるゴム樹栽培普及を促進する方針が打ち出されている。このほか、インドネシアではニューケアス方式のゴム生産地開発に取り組み、タイでは再植計画が進められるなど天然ゴム増産の動きは活発化している。

同グループによる80、81年のゴム需給予測は次の通り。

<table>
<thead>
<tr>
<th></th>
<th>80年</th>
<th>81年</th>
</tr>
</thead>
<tbody>
<tr>
<td>ゴム需要量</td>
<td>1,267万5,000トン</td>
<td>1,305万トン</td>
</tr>
<tr>
<td>合成ゴム需要量</td>
<td>875万トン</td>
<td>900万トン</td>
</tr>
<tr>
<td>天然ゴム需要量</td>
<td>392万5,000トン</td>
<td>405万トン</td>
</tr>
</tbody>
</table>

ゴム生産量	1,287万5,000トン	1,315万トン
合成ゴム生産量	900万トン	915万トン
うちアメリカ生産量	243万トン	246万トン
うち日本生産量	110万トン	110万トン
天然ゴム生産量	387万5,000トン	400万トン
うちマレーシア生産量	157万5,000トン	160万トン
うちインドネシア生産量	96万トン	98万トン
うちタイ生産量	56万トン	60万トン
うちインド生産量	15万トン	16万トン
うちメリランカ生産量	15万1,000トン	14万9,000トン

パプア・ニューギニア 砂糖工場建設着工へ

パプア・ニューギニアの砂糖プロジェクトの製糖工場建設が近く始まる。
同プロジェクトは砂糖の自給を目的としニューギニア島両北部のラム川流域に甘蔗農園と製糖工場を建設するもの。事業主体は政府と外国企業数社との合弁によるRamu Sagar Holding Ltd.。建設工事は川崎重工が請負い、総工費7,000万キナ（1キナ=340円）で82年末に完成の予定。同プロジェクトの砂糖生産目標は4万トンで、85年までに3万トンを達成する見込み。

マレーシア、フィリピンで
ヤン由来の石鹸、洗剤原料生産計画

このところマレーシア、フィリピンを舞台にココナッツ油、バーム油、バーム核油から石鹸、洗剤、シャンプーなどの中間原料を生産する事業計画実現化への取り組みが外国企業によって繰り広げられている。これは最近の石油価格の高騰で、石鹸、洗剤メーカーが石油系原料の先細り不安で石油ばねる傾向にあること、洗剤汚染で市場が天然指向してきていること、などの理由からこれら植物油へのニーズが急上昇をたどっているといった環境の変化に起因しているよう。

マレーシアがバーム原料供給地として注目されるのは、同国が世界一のバーム油生産国であり、国内にバーム油を食用原料として加工する事業はあるものの、高級脂肪酸など工業用原料としての加工事業が皆無に近いと、この面での外資受け入れに政府も積極的な姿勢を示しているといった条件を備えているとみられるからである。

同国でのバーム油からの脂肪酸生産には日本の石鹸メーカーも数社が関心を示しているが、いまのところライオン様が一歩先でている様だ。同社が明らかにした事業計画によれば、石鹸原料として牛脂の代替になるバーム油から高級脂肪酸を2～3万トン年産し、対価輸出する。同社ではこれまで外部仕入れの中間原料を配合して製品づくりを進めてきているので、マレーシアでの投資計画が実現すれば、同社の中間原料供給体制はその部分安定度を高めるものと
みられる。

一方、世界一のココナッツ生産国フィリピンでは、花王石鹸が既にココナッツ油を原料にメチル・ココネート、精製グリセリンの生産に入っているが、花王の事業に続くものとして最大手の搾油企業United Coconut Oil Mills (UNICOM)と西ドイツの最大油脂メーカーHenkel GmbHとの合弁交渉がまとまる方向で最後のツメに入っている。

同プロジェクトは、ココナッツ油を原料に高級アルコールを3〜4万トン年産し、シャンプー、洗剤などの原料として国内需要家に供給、余剰が出れば輸出に向けるというもの。UNICOMは80年2月に同プロジェクト構想を発表して以来、企業化調査、合弁相手の選定に取り組んでき、わが国の花王石鹸、アメリカのProcter and Gambleとも接渉してきた経緯がある。建設経費は当初2,500万ドルと想定もられていたが、その後のインフレで倍以上に膨らみ、またHenkelの出資額も当初の1,500万ドルに上積みされそうである。工場立地は、主都マニラ近郊で地元調査の結果カビテ輸出加工区内に確保されることが有力になってきた。

ASEAN 合弁マルーシア尿素計画に調印

10月6日、ASEAN加盟各国は共同プロジェクトの一つ、マルーシア尿素肥料工場計画の合弁事業協定に調印した。

同計画はマルーシアのサラウク州ピンツルに尿素1,500トン、アンモニア1,000トンの日産規模の肥料工場を建設するもので、83年に完成の予定。資本金は2億マレードルで各国の出資機関および出資比率は、マルーシア＝ペトロナスが60％、インドネシア＝P.T.ブク・スリウィジャヤが13％、フィリピン＝投資委員会が13％、タイ＝工業省が13％、シンガポール＝テマセク・ホールディングが1％。
ジュート生産国 ジュートのOPEC版創設と会合

バングラデシュより伝えられるところによれば、ジュート生産6カ国は9月24日から3日間、バングラデシュのダッカで会合、OPECタイプのジュート輸出国機構（OJEC）創設について協議したが、合意をみず定期的な協議の場を設ける決議をして閉会した。

同会合はFAOの後援によるもので主催国のほかビルマ、インド、ネパール、タイ、ブラジルが参加した。OJEC案はバングラデシュのカーン・ジュート相が提唱し、その主旨は合成纖維との競合、価格変動、運賃の高騰などでの対処策を講じるためOPECのような機構を創設して生産・輸出国としての利益を守ろうというもの。

なお、ジュート生産国はUNCTADの後援により再度、12月に会合することになっている。

アジア太平洋森林開発グループ

本部をマレーシアに設置

関係筋によるとFAOが後援するアジア太平洋森林開発グループの本部がマレーシアのクアラルンプールに設置される運びとなった。これはFAOの本部設置案をマレーシアが受け入れたもの。

本部設置案については明らかでないが、同グループは加盟国の森林計画、管理面での技術レベルの向上を図るために組織されたもの。加盟国はアフガニスタン、バングラデシュ、フィジー、インド、インドネシア、マレーシア、ネパール、パプア・ニューギニア、ソロモン諸島、スリランカ、タイ、西サモア。
家畜飼料としての剝皮されたサトウキビ

熱帯地域では、サトウキビ（学名Saccharum officinarum L.）は、他の作物より単位面積当たり高いエネルギー量を生産する。

サトウキビの植物全体の年・エーカー当たりの収量は土壌、肥沃度等で大きく変化しているが、100ロングトン（1ロングトン＝1.0161トン）より高い例外的収量（年・ヘクタール当たり250トン）も記録されており、70ロングトンの高収量もめずらしくない（Warnaars, 1973）。

バハマでは、全サトウキビ植物の平均収量は、エーカー当たり約39ロングトンである。サトウキビ中の可消化エネルギーは、主に砂糖として茎に貯蔵される。植物体が成熟するにつれて、砂糖は急激にしち糖に変換されるため砂糖含量は減少する。成熟後には砂糖がますます減少するのに応じて、しち糖含量は低下する。このことは砂糖生産のための価値を低下させるが、家畜飼料としての価値は必ずしも損われていない。家畜によるこのエネルギー利用への主たる障害は次の2点にあるらしい。第1に、囲い保護皮が牛にpithの採食を困難にしているということ。第2に、サトウキビは人間の食糧と考えられているので、家畜の飼料としては高価すぎるという考え方があるということである。

1960年代初期のMillerとTilbyによるサトウキビ分離方法の発明は、サトウキビの部位別利用に基づく家畜生産の増大への道を開いた（Dian, 1972）。ケーンセパレーターと呼ばれ後続の機械はサトウキビを分割し、皮から柔らかいシーガービス（suger pith）を分離する。剝皮された物質はコムフィス（comfith；CF）と呼ばれ、剝皮されたサトウキビの商標名である。このCFは湿ったオガクズと同様の密度をもった甘い乳白色的物質である。

Derinded sugarcane as an animal feed, by W.J. Pidgen.
この分離加工方法は、そもそも砂糖工場で使用するために開発されたものである。

分離処理によるサトウキビの分割

通常の砂糖生産業におけるサトウキビ生産量は、圃場に廃棄されるサトウキビ梢葉（cane top：CT）を考慮に入れず、エーカー当たりのサトウキビ茎のトン数で示されている。サトウキビ梢葉は反芻家畜の飼料として価値があるので、サトウキビ全体の飼料生産量を考慮する場合には、これも考慮に入れられるべきである。サトウキビ植物の生産量は、サトウキビ茎生産量に30%を加算することによって推定できる（Warnaars, 1973）。従って、30トンのサトウキビ茎を生産する1エーカーの圃場では、サトウキビ植物全体としては39トン (バハマの平均値) を生産することになる。

サトウキビの分離行程と生産される部位別製品

分離機を用いて上図に示したようにサトウキビを加工処理すると、コムフィス（Comfith）と外皮の2つの部分が生産される。サトウキビ茎の15%を構成している外皮は、飼料原料としては不適当なため通常廃棄されるが、他の多くの用途（熱、エネルギー、圧縮ボード、紙製品、マルチ、激きわら等）に利用価値がある。第3番目の部分は、ケーントップを細断機で加工することにより生産される。細切されたケーントップは、反芻家畜にふさわしいCF+CT
海外農業開発１９８０－１０

T "混合飼料を生産するためにコムフィスに混合される。しかし、単胃家畜にはCFのみが飼料として適する。サトウキビ分離機の数種類が現在キャナディアン・ケーン・イクイップメント社により製造されているが、最も小型の機種は1時間当たり約0.5トンの処理能力をもつ手動押入型の機械である。サトウキビ茎は最初2つに分割され、その後皮は引き機の中を通過する。中型機械は1時間当たり4トンの処理能力をもち、大型の完全自動の機種は現在開発中である。

サトウキビとその部位別の物理学、化学、栄養学的特性

CF部分は主要なエネルギー源であり、砂糖貯蔵細胞（pith）と維管束（fibrovascular bundle）を含んでいるが、ケントップおよび果皮にはこれらの物質は含まれていない。このCF部分はきわめて嗜好性が高く、DMも低く（約30%）、DMの50〜60%は抽出できる砂糖の形（主としてシュ糖）である。また、粗蛋白質量は大麦のそれとほぼ同量。その高い砂糖含量のため容易に発酵し、酸性のサイレージを生産する。また、CFは乾燥してベレットにできる（James, 1973; Donefer, 1973）。

CFは単胃家畜にはCTと混合されず単独に給与されるが、CTは通常、反芻家畜にサトウキビ内に含まれるのと同じ比率でCFに混合される。"CF+CT"混合物はCF単独に比較してセルロースが多く、砂糖含量はやや低く、粗蛋白を1/3多く（約3%）含んでいる。反芻家畜用の"CF+CT"の可消化エネルギー量はCFのそれと同様である。CFのサイレージ調製では酸性のサイレージが生産される。CFまたは"CF+CT"に基づく飼料には蛋白質、ミネラル、ビタミンを補給する必要がある。CF又は"CF+CT"は可溶性炭水化物を高割合で含んでいるので尿素を高レベルで（反芻家畜の窒素要求量の60〜80%）補助飼料に含むことができる。

外皮部分はリグニン、セルロース、ワックス類の含量が高く、バゲスと同様に飼料価値は低いと考えられる。大規模な牛・羊一貫生産経営ではBenderらの方法（1970）により、母牛のために外皮を消化しやすく且つ飼料価値を高めるための蒸気処理が可能である。処理された外皮または未処理の外皮の飼料価値に関する試験データは不足している。

家畜飼料中のCFおよび"CF+CT"

CFは通常CTと混ぜて給与されるので反芻家畜に対するサトウキビ給与に関するデータはほとんど"CF+CT"を使用したものに限られている。同様に、単胃家畜については、CF
の単独給与に関するデータのみが報告されている。ここで言及する家畜試験は全てバルバドスで実施されたものである。

①肉牛および豚

フリージアン孕んとバルバドス・ブラックベリー種の牛を試験畜として用いた。100Kg
～約340Kgの牛を生の"CFCT"飼料で45日～250日の期間飼育した。飼料には優
れたフィードロット能力を発揮できるように十分な量の蛋白質、ミネラル、ビタミンと尿素で
栄養価の強化を図った。窒素の約60％は尿素として給与した。残りの蛋白質は"CFCT"
と一般の油種種子粉末、または魚粉から供給された。"CFCT"主体の飼料で飼育された
牛の一日当たり平均増体重は0.9Kg (James, 1973; Donefer, 1973)であった。
トウモロコシや穀類などの他のエネルギー源で"CFCT"を補うことから平均一日増
体重を1/3ほど増加させた。
一方、肉質も優れており、バルバドス観光業者の取扱っている北米産の高級牛肉に比べて甲
乙つけがたいものであった。羊での試験では、"CFCT"飼料は一日当たり0.11Kgまで
の増体重を可能にし、子羊の肥育に申し分ない飼料であることが示された。"CFCT"の
サイレージの飼料価値は生の"CFCT"飼料よりも劣っており、サイレージの乾物摂取量
および牛・羊の増体重は生のものに比べてはるかに低い結果であった。しかし、サイレージ摂
取量の改善方法が研究されたので、ある程度の改善策が開発されている (James, 1973)。
なお、ナタネ種子粉末は"CFCT"給与の際の脂肪質添加物として極めてすぐれているこ
とが発見されている。

②乳牛

搾乳牛飼料中の牧草および濃厚飼料の50％、またはそれ以上を"CFCT"で代替した
飼養試験において、この"CFCT"飼料が泌乳生産、正常な乳牛組成、体組成を十分維持すると報告されている (James, 1973)。反腸家畜に関する現在の関連資料をすべて検討
してみると、"CFCT"は泌乳牛および育成雛牛にとって申し分のない飼料のように考え
られる。

③豚

豚の肥育においては、仕上げ期間中に一日当たり0.5Kg、またはそれよりやや高い増体重を
維持しながら濃厚飼料の約50％までを生のCFで代替できる。しかし、若豚はCFを効率的に
利用できない (James, 1973)。

CF給与が繁殖に及ぼす影響については知られていないが、CFがかなりの高レベルで利用
できるとは間違いないようである。

CFを生産または乾燥した形で養豚飼料に用いる場合には、高レベルでの給与が飼料摂取量を抑制したが、この他はこれといった問題は生じなかった。肉質についてみると、CF飼料を採食した豚から極めて良質な豚肉が生産された。

④鶏

鶏での研究（限られた研究しか実施されていないが）によれば、CFはブロイラーおよびロースター（roaster）用飼料にある程度混合できるが、比較的高レベルの纖維含量に耐えられる産卵飼料飼料にはさらに多量に用いることができると報告されている。この点に関して明確な結論を出す前に、もっと多くの研究が必要である（JAMES，1973）。

家畜飼料としてのサトウキビおよびその部位の優れた特徴

①圃場での自然貯蔵および保存

サトウキビは成熟とともに糖含量が上昇するので、砂糖生産のためのサトウキビは決った期間内に収穫されなければならない。しかし、家畜飼料としてのサトウキビは飼料として必要な時点まで収穫しないで圃場に放置（以下自然貯蔵・保存という）することがができる（Wernaars，1973）。この自然貯蔵は、通常の穀物生産において雨季および乾季にみられる不安定な供給問題を生じさせることなく、エネルギーの均一供給を可能とする。また、この自然貯蔵は保存および貯蔵に高価な施設を必要としない。たとえば、カナダでは牧草の生育シーズンに家畜飼料約6カ月貯蔵するための施設が必要である。

家畜および飼料の管理システムはサトウキビの自然貯蔵の特徴によって大いに单纯化されている。

細切サトウキビは飼料質の低下を受けることなく約1週間は貯蔵可能である。

②高収量

エーカー当たりのCF+CTの高収量は小面積での集約的な家畜生産経営の発展を促す。

③非蛋白態窒素（尿素）の効率的使用

CF+CTに添加する蛋白質の大半は安価な尿素で代替できるので、CF+CTは特に肉牛、乳牛および羊の飼育に適している。CF+CTには可溶性炭水化物の含有量が高いが、尿素毒性の危険性は取り除かれる。
④CFおよび"CF+CT"の容易なサイレージ調製

CFおよび"CF+CT"サイレージを採食している牛の増体量は比較的低い成績であったが、緊急用途としてこれらの飼料を貯蔵するのは簡易でかつ安価である。このサイレージの摂取量を高める方法は将来まちがいなく開発されよう。

⑤消化障害

飼養試験期間を通じて、腹痛症、ケトーシス、アドシス、糖密中毒および他の消化障害はみられなかった。

⑥補助飼料給与

CFおよび"CF+CT"飼料は蛋白質、ビタミン、ミネラル含量が少ないので、これらを飼料として効率的に使用するためには正確な補助飼料給与を行うことが重要である。

部位別サトウキビからの牛肉生産に関する推定コスト

費用の推定には次のような仮説がたてられた。

○砂糖生産用に不適当な多量のサトウキビを家畜飼料に加工することができるので、家畜飼養用に用いることのできるサトウキビは砂糖生産向けのサトウキビより廉価となり、また、家畜飼料用として特に栽培されるサトウキビも多分低コストになると考えられる。

○ケントップは加工コストの他には特別な費用をかけることなくサトウキビ茎に混合できる。

○"CF+CT"を採食する反腸家畜が必要とする窒素要求量の大半はPMV添加物中の尿素から供給されるであろう。

パルバドスにおける肉牛試験の結果では、飼料要求率は生体重1ボンド増加当たり10ボンドの乾燥飼料量で、飼料の混合割合は大体"CF+CT"80%に対しPMV添加物20%であった。なお、一般の肉牛生産では、この比率は85%の"CF+CT"と15%のPMV添加物の割合に変えられると考えられる。この混合率の変更は添加物中に尿素量を増やし、その代わり残り成分であるかぶり栄養の高い"安定因子"と考えられる添加物の混合量を減ずることによって行われる。

1ボンドの生体重増加量当たり8.5ボンドの"CF+CT"という飼料要求率とするならば23,184ボンドの乾物は、2,728ボンドの牛肉を生産する。

そこでPMV添加物必要量は、2,728ボンド×1.5=4,092ボンドになる。

コスト（カナダドル）は次のように計算できる。
1) サトウキビ植物体の39ロングトンのコスト（トン当たり9ドルの茎を30トン分）………270ドル

2) 77280ポンドの生の"CF＋CT"の加工コスト（1ポンド当たり0.1セント、総費用および運転費用を含む）………77ドル

3) 4092ポンドのPMV添加物の費用（1ポンド当たり7セント）………286ドル

2728ポンドの牛肉を生産するための全飼料コスト………633ドル

生産される牛肉1ポンド当たりの飼料コストはそれ故、633÷2728＝2.33セント（今日カナダで生産される牛肉1ポンド当たりの飼料コストは35〜40セント）である。

このように、結論としては"CF＋CT"を利用した牛肉生産の飼料コストは北アメリカにおけるコストよりはるかに低いと断言できるようである。

サトウキビとその部位のエーカー当たりの収量（1）

<table>
<thead>
<tr>
<th>サトウキビの部位</th>
<th>生ロングトン</th>
<th>生ポンド</th>
<th>DM(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>全サトウキビ植物</td>
<td>39.0</td>
<td>8.7360</td>
<td></td>
</tr>
<tr>
<td>サトウキビの茎</td>
<td>30.0</td>
<td>6.7200</td>
<td></td>
</tr>
<tr>
<td>ケートトップ（CT）</td>
<td>9.0</td>
<td>2.0160</td>
<td></td>
</tr>
<tr>
<td>コムフィス（CF）</td>
<td>25.5</td>
<td>5.7120</td>
<td>17.136</td>
</tr>
<tr>
<td>外皮</td>
<td>4.5</td>
<td>1.0080</td>
<td></td>
</tr>
<tr>
<td>CF＋CT</td>
<td>34.5</td>
<td>7.7280</td>
<td>23.184</td>
</tr>
</tbody>
</table>

(1) ……サトウキビの茎はエーカー当たり30ロングトンの収量

(2) ……CFと"CF＋CT"のDM含有量は30％

しかしながら、添加飼料中に占めるPMV添加物の費用割合がこのように極めて高いのは、"CF＋CT"が良質の補助飼料を必要としていることにも一部あるが、その主たる理由は添加物費用の大半が製造された添加物で占められているためである。多くの場合、飼料添加物の大半はその地方の飼料原料によって一層安価に供給されることが可能である。たとえば、良質アルファルファを用いれば重要な添加成分のほとんどを供給できるであろう（一部省略）。

−17−
農林水産用語辞典

☆ A5版 602頁
☆ 海外農業開発財団編
☆ 定価 5,000円
☆ 販売元 (社) 海外農業開発協会
TEL 03(478)3508(代)

海外農業開発 第64号 1980.10.15

発行人 社団法人 海外農業開発協会 岩田喜雄 編集人 小林一彦
〒107 東京都港区赤坂8-10-32アジア会館
TEL (03)478-3508

定価 5,000円
年間購読料 6,000円 送料共
（海外便郵送の場合は 6,500円）

印刷所 日本軽印刷工業株 (833)6971
圧力タンク式給水設備は、空気の圧縮性を利用したポンプの自動運転装置です。
この方法は最も簡単でかつ経済的であるため、古くから使われておりましたが、従来のものはポンプが大容量になるとタンクも大きく、設置が困難になるため比較的小容量のものに限られておりました。
当社では、畳地から水田から水路を通過で、タンクも従来の数分の一から十数分の一の小さなもので間に合う、数々の特長をもった最新式の圧力タンク式給水設備を完成し、発売を開始いたしました。

特 長
①チャタリングが生じない..........圧力タンクが小型でも小容量・長時間の運転、あるいは大水量・長時間の運転でもポンプの頻繁な起動停止はありません。
②自動的に空気補給が行なわれる........コンプレッサーを必要としません。圧空補給は補助ポンプを利用して行なわれますので、定期補給の際にも送水を継続できます。
③揚水面積が小さい........圧力タンクの容積が従来型に較べ小さいので、揚水面積が小さくてもよいです。
④設備費が低廉........設備が小型化され軽量・揚げ上がることが容易で、スペースも小さく設備費が低廉です。
⑤ウォーターハンマーの心配がない........圧縮システムが完成されており、無入運転ができます。夜間も配置内に水が充満しているのでウォーターハンマーをおこさず、朝の作業時にもすぐ散水ができます。
総合建設コンサルタント
調査・試験・研究・計画・設計・電算・監理
日本工営株式会社
取締役会長 久保田 豊
取締役社長 池田 紀久男

本 社：東京都千代田区麹町5-4
TEL.03(263)2121(代表)
技術研究所：埼玉県東松山市松山小松原砂田2960
TEL.0493(23)1300
東 北 支店：仙台市本町1-12-12(DIK東京ビル)
TEL.0222(27)3525(代表)
大 阪 支店：大阪市北区堂島2-2-23(白雲ビル)
TEL.06(343)1181(代表)
福 岡 支店：福岡市中央区赤坂1-6-15(日新ビル)
TEL.092(781)3740
営 業 所：札幌営業所・北海道営業所・大阪営業所・名古屋営業所・広島営業所
海外事務所：ソウル・ジャカルタ・ダッカ・カタマンズ・アレッポ・エヌマ・デンデ

全国に210余の<富士>。
これらを結ぶ、大きなネットワークをバックに
ひとつの<富士>は
地元に密着した活動を続けています。
たとえば、金融サービスはじめ
時代に即した事業経営のアドバイスなど
さまざまな情報の提供も。
経営の多様化に応えてる
<富士>の多角的なサービスを
ご利用ください。

皆様の
富士銀行